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Abstract

"4 Algorithms for the dynamic programming and transitive closure problems
are presented for a linear pipeline of processors. These algorithms require
only a constant number of 40 ports and are optimal in their area and
time requirements. /
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I. Introduction

Dynamic programming and transitive closure are two important computational

problems. Dynamic programming is one of several widely used problem-solving tech-

niques in computer science and operations research (see Brown's review in [41 ). The

transitive closure algorithm also arises in many contexts. For example, in the data-flow

analysis of programs, we often need the closure of the "call" relation.

Straightforward dynamic programming requires O(n3 ) 1 sequential time where n is

the problem size. Similarly, well-known serial algorithms for transitive closure of an n X n

matrix require O(n3 ) time [19,201. As matrix multiplication and transitive closure are

computationally equivalent [11, the time complexity of the transitive closure algorithm

can be further reduced by the methods of Pan [12]. However, the best known upper-

bound on the time complexity for matrix multiplication is O(n 2 7 ) [121 which is achieved

at the expense of complicated code.

Parallel algorithms for these two problems have been studied in the past [6,11,171.

The best known upper bounds on the parallel time complexity for these two problems is

O(n) reported by Guibas et al. [8]. They use a systolic array of O(n 2) processors.

Systolic arrays (see [91 for a description of systolic arrays ) have been proposed as a

simple and effective means of employing VLSI technology to handle compute-bound

problems. These array processors are typically made up of simple, identical processing

elements (which we will refer to as cell, from now on) that operate in synchrony. Several

array structures have been proposed that include linear arrays, rectangular arrays and

hexagonal arrays. High performance is achieved by extensive use of pipelining and mul-

tiprocessing. In a typical application, such arrays would be attached as peripheral

)An)-t Og(n)) and ,An)-O(h(n))i there ait. constants cl, and c2 such that Aln)5cg(n) and

An 214nMePtctively-
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devices to a host computer which inserts input values into them and extracts output

values from them.
i't

In practice linear arrays are more attractive than two-dimensional arrays (like a

mesh and a hexagonal array). Among them are the following: Linear arrays have

bounded I/O requirements [Q]. In a wafer containing faulty cells, a large percentage of

non-faulty cells can be efficiently reconfigured into a linear array [101. Synchronization

between cells in a linear array can be achieved by a simple global clock whose rate is

independent of the size of the array [51.

In this paper we present linear array algorithms for dynamic programming and

transitive closure problems. Our algorithm uses O(n) cells and requires 0(n 2 ) time steps

for dynamic programming problems of size is and transitive closure of nX n matrices.

O(n 2) time steps is optimal as at least n 2 time steps are needed to insert the elements in

the array. Each of the cell in the array requires O(n) storage (referred to as area in the

VLSI context). We will show that O(n2 ) storage used in the array is optimal.

Parallel algorithms for these two problems that have appeared in the past are

vulnerable to failures in the cells and communication links in the parallel architectures

on which they run. This is very likely in the systolic array solution proposed by Guibas

et al. Systolic arrays implemented in VLSI can have (with high probability) faulty cells

and links caused by production faults in the manufacturing process that result in defects

occuring randomly in the wafer [2].

Varman and Fussell 1181 presented a technique to transform "one-way" pipelined

linear-array algorithms (that is, algorithms wherein elements in the linear array move

only from left to right) into an equivalent algorithm on any connected component of

cells by configuring it into a logical-linear array. Neighbouring processors need not be

PRVIU PG



4

physically adjacent in the connected component. The connected component of cells

could form the non-faulty cells in an underlying network that has both faulty and non-

faulty cells and communication links. As we will see later on, our algorithms for dynamic

programming and transitive closure are one-way pipelined algorithms and hence can be

made robust by straightforward application of the technique in [181.

The remainder of this paper is organized as follows. In Sections 2 and 3 we describe

our algorithms for dynamic programming and transitive closure respectively. In the

appendix we provide proofs of correctness of these algorithms and also establish the

optimality of the area required by the array.

2. Dynamic Programming

Many problems can be solved by the use of dynamic programming techniques. In

order to describe our array algorithm without excessive generality, we will focus on the

construction of an optimal binary search tree which is a well-known example of dynamic

programming. An optimal binary serach tree is constructed by computing the following

recurrence (see Knuth [81 for details):

c(i)-w(i,j) + min. (c(i,k)+c(kj)), 1~i<j<n+l
i<k<j

We compute this recurrence on a linear array of n cells. The array is comprised of

four data belts - Hr, H,, Vf, and V,; two control belts (each 1-bit wide)-Hc and Vc and an

address belt Ad as shown in Fig. 2.1. below.

Hg_ -" a..,

HS

Vf

VS

Figu re 2 .1



Tokens are inserted into these belts at the input of cell 1 and emerge from the out-

put of cell n. The tokens stay on the same belts as they traverse the array. The tokens

travelling in Hc, Vc, Hf, H,, Vf, V, and Ad encounter a delay of 4, 2n+3, 2, 4, 2(n+l),

.02(n+2) and 2 clock cycles respectively between any cell i and i+1. These delays can be

implemented by shift-registers. " " in the figure above denote shift-register on a belt

between cells. A token enters a cell from the left (its input) in the beginning of a cycle

and emerges from the right (its output) at the end of the cycle (possibly updated). For

example, tokens on Hc enter cell 2 at a and leave at b. We will refer to the tokens at a

cell's input as its input tokens.

Each cell in the array has a local memory of size n. The operation of a cell in any

clock cycle then is the following. Let x be the contents of the address token at the cell's

input. The cell updates location x in its local memory. The new value of x in its local

memory is the minimum of the old value, the sum of the contents of its input tokens on

Hf and V, and the sum of the contents of its input tokens on H, and Vf. If the control

bit is set in its input control token on belt Hc then it changes the contents of its input

tokens on belts Hf and Vf to the updated value of location x. Lastly, if the control bit

is set in its input control token on belt V c then it changes the contents of its input

tokens on belts H, and V, to that of its input tokens on Hf and Vf respectively. The

linear-array algorithm then is the following.

1. Store w(ij) in cell j-i at location n-i.

2. At cell 1 do the following:

a. Insert a control token on H, with its control bit set at time 2kn+2, Vk>O.

b. Insert a control token on VC with its control bit set at time 2kn+1, Vk>-n.



c. Insert an address token initialized to adrress k on belt Ad at time 2(kn+1+i),

k>0 and VI10<l<n.

This completes the description of the algorithm. The effect of the algorithm is the

following. Let 6-n-i and -ylj-i. Let c(ij) denote the token in location 6 of cell -y that is

initialized to w(ij) and eventually transfe-red onto Hf and Vf.

c(ij) is computed and ready in cell - at time 2[6n+1+2(--I) ]. The cell then starts

transmitting c(ij) on both Hf and Vf. c(ij) travels on Ht for an additional 2-1 clock cycles

and is then transferred onto H, at cell 2-1. It then remains on H, till eternity. Analo-

gously, c(ij) travels on Vf for an additional 2-(n+l) clock cycles before being transferred

onto V, at cell 2- whereupon it travels on V, till eternity.

Example: Consider computation of c(1,5) where n=4.

Now c(l,5)=w( 1,5)+min (c(1,2)+c(2,5), c(1,3)+c(3,5), c(1,4)+c(4,5) }.

c(1,3) and c(3,5) are ready in cell 2 at time 30 and 14 respectively. c(1,3) then trav-

els on Hf for an additional 4 (-1=2) cycles and reaches cell 4 (2--4) at time 34. c(3,5)

travels on Vf for an additional 20 (2-yn+2T-20) cycles and reaches cell 4 at the same

time. From step (2b) of the algorithm the control token inserted at time 1 reaches cell

4 at time 34 (the delay on Vc is 2n+3 cycles/cell). So at time 34 then c(3,5) is on both Vf

and V. and c(1,3) is on Hf and H, (recall the cell operation when a control token on V,

is present at its input).

c(2,5) is ready at time 28 in cell 3. It travels on Vf from cell 3 and arrives at cell 4

at time 38 (the delay on Vf is 2n+2-10,cycles/cell). The case of c(1,2) is interesting. It is

ready in cell 1 at time 26. It then travels an additional 2 clock cycles on Hf till it
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reaches cell 2 (-y=l) at time 28. It is then transferred onto H,. It travels on H, for an

additional 8 cycles (the delay on Ha is 4 cycles/cell) till it reaches cell 4 at time 38. At

time 38 c(1,2) and c(2,5) arrive on H, and Vf respectively at cell 4. Similarly it can be

verified that c(1,4) and c(4,5) also arrive at 4 on Hf and V, respectively at time 38.

3. Transitive Closure Algorithm

The transitive closure algorithm is the following (see [1] for details). Consider an

nX n matrix A of O's and l's. This boolean matrix can represent a directed graph, if we

let the vertices of the graph be 1,2,..,n and the element aij of the matrix be 1 if there is

an edge from i to j and 0 otherwise. The transitive closure A' of A is also a boolean

matrix where the (ij)th entry (denoted as ai?) is a 1 if and only if there is a directed path

from vertex i to vertex j in the graph. By definition every vertex has a path to itself.

Let ai* denote a k-path from vertex i to vertex j that passes through no vertex

numbered higher than k except the end points. The transitive closure then can be

evaluated using the following recurrence (see [1) for details):

4 k+1) ) V (aijk) ac()), 1<ij,kn

We compute this recurrence on a linear array of 2n-1 cells. The array is comprised

of two data belts - Hf and Vf; two control belts (each 1-bit wide) - Hc and V, and an

address belt Ad as shown in Fig. 3.1. below.
Vf

*iAd

HC 2 .- 2n-1

Figure 3.1



Tokens are inserted into these belts at the input of cell 1 and emerge from the out-

put of cell 2n-1. As in the algorithm for dynamic programming, these tokens stay on the

same belts as they traverse the array. The tokens travelling on HC, VC, Hf, Vf and Ad

encounter a delay of 1, (n+1), 1, (n+l) and I clock cycles between any cell i and i+1. A

token enters a cell from the left (its input) at the beginning of a cycle and emerges from

the right (its output) at the end of the cycle (possibly updated).

Each cell in the array has a local memory of size n. The operation of a cell in any

* '' clock cycle then is the following. Let x be the contents of the address token at the cell's

input. The new value of x is the old value that is ORed to the ANDed contents of its

input tokens on Hf and Vf. If the control bit is set in its input control token on belt Hc

then it changes the contents of its input token on belt Vf to the updated value of x and

if the control bit is set in its input control token on belt Vc then it changes the contents

of its input token on belt Hf.

Our linear array algorithm is a three-pass one. We use two copies of the matrix A.

Let aij denote the (ij)th entry in one copy and aij denote the same entry in the other

copy. Although initially aij and ai; are the same in both the copies, these values change

as the algorithm progresses. aij travels on Hf and ai; travels on Vf.

Let c(ij) denote the token in location i of cell i+j-1. Let t,P (1 p<3) denote the

time when a pass begins. The linear array algorithm is the following.

1. Begin the first pass at t,1, the second pass at t,2=t.'+(2n-lXn+l) and the third

pass at time t,3-t, +2(2n-lXn+l).

2. In every pass p (I<p53) do the following at cell 1.

a. Insert a on Hf at time tP+n(n-l)+n(i-l)+(j-l).



b. Insert a,, on Vf at time tP+(n-j)n+(i-I).

c. Insert a control token with its bit set on VC when a1 is inserted on Vf.

d. Insert a control token with its bit set on HC when a1 is inserted on Hf.

e. Insert address i on Ad when aij is inserted on Hf.

This completes the description of the algorithm. At the end of the three passes

c(ij) will have a 1 if and only if the transitive closure of matrix A has a 1 in that posi-

tion.

Example: Consider the graph shown in Fig. 3.2 below comprised of four vertices.

1 2k

3 4

Figure 3-2

We illustrate the computation of a1*2 . In pass 1, a13 and a34 (which are both initial-

ized to 1) are inserted at times t, + 14 and t,' + 2 respectively, a,3 and a34 meet at cell

4 at time t,' + 17 (a34 travels on Vf which has a delay of 5 cycles/cell). So c(1,4) in cell

4 is set to 1 at time t,1 + 17. a 14 is inserted at time t,I + 15. It reaches cell 4 at time

t + 18 whereupon it is set to 1.

In the second pass, a14 and a42 (which are initialized to 1) are inserted at times

t,2 + 15 and t,2 + 11. They meet at cell 2 at time t,2 + 16 whereupon c(1,2) is set to 1.
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4. Concluding Remarks: We have presented a linear array algorithm for dynamic

programming and transitive closure problems that are optimal in their area and time

requirements. Our algorithms are suitable for realization in VLSI. Using the technique in
-,.

[18] our algorithms can be made to run on several parallel architectures, like tree

." ~. machines [15] and mesh arrays, that have faulty cells.

. Realizing the algorithms in VLSI raises some practical issues. In particular, we will

consider the potential mismatch between the size of the problem being solved (k) and

the size for which the chip is handled (n). If k>n, the problem can be partitioned into

blocks of size n and the chip used iteratively to handle each block. An obvious solution

to handling the case when k<n is to consider the problem of size k as part of a bigger

problem of size n (obtained by padding the problem of size k with dummy elements).

This would however result in a time penalty factor of (- over that obtained by using
k

a chip of compatible size. An alternative approach is to configure the chip, as a prepro-

*" cessing step, to match the problem size. This would require decreasing the number of

cells configured to k and decreasing the size of the buffer in eacl: cell appropriately. The

selection of cells can be efficiently accomplished on a reconfigurable network such as the

CHiP [14]. Changing the buffer size requires the shift registers implementing the buffers

--.. to have variable lengths, similar to the proposal in [3]. However requiring the shift regis-

ter length to be continuously variable (that is, for all values of k from 1 to n ) would ae

prohibitively expensive in terms of layout and area complexity. The algorithms can be

modified to run on k cells without changing the buffer size (details omitted in this

paper). These modified algorithms have a time complexity of O(nk) and hence this

results in a time penalty factor of 0(-!). Let the buffer of size N be divided into a equal

.4.
p n wNm. partitions, which can be tapped at -, G>m>l. Then a problem of size k,

4'. ,O



Sk- < will employ a buffer of size nf-Nm The time penalty factor in

such a case will be O( Nm ) It is seen that >N, this factor will never exceed 2. This

2ak

* V implies, for example, that with just four partitions to the buffer, problems as small as

the original size will incur a time penalty of at most a factor of 2. For most values

of k, the penalty will be even less as illustated in Fig. 4.1 below, which is a typical profile

of the performance degradation factor versus problem size for the case of the buffer split

into four partitions.

2.0 -

1.9

1.0t N. N 3N N
-8 4 24

Figure41
An ideal solution to small problem sizes is to design an algorithm on an array

where the storage in any cell is independent of the problem size. Recently, we have been
able to do this for matrix multiplication [13]. We are currently investigating algorithms

for both these problems that can run on a linear array where the storage in any cell can

be made independent of the problem size.
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* "Appendix

We now provide proofs of correctness for the dynamic programming and transitive

closure algorithms. We will also show that the area required by the array for these two

algorithms is optimal. In the proofs to follow, in any reference to a control token we

will assume that its control bit is set.

A. Proof of the Dynamic Programming Algorithm

We first establish that the algorithm described in Section 2 correctly computes

A c(l,n+l). Let -y =j-i and 6 -n-i, l<i<j__n+l. In the following Lemma we establish the

time at which c(ij) is transferred onto Hf and Vf.

Lemma A.1: c(ij) is transferred onto Hf and Vf in cell -1 at time 2[bn+1+2(-r-1)].

Proof: c(ij) will be transferred onto Hf and V only if there is a control token present

on Hc at cell "y's input at time 2[6n+1+2(y-1)j. This means that this control token must

have been inserted at HC of cell 1 at time 2[6n+l+2(--1)-4(-y-l) (the elements in Hc

encounter a delay of 4 cycle/cell). By step (2a) of the algorithm, a control token is

inserted into the array on Hc at time 2[kn+11, Vk>O. U
,Lemma A.2: (1) c(ij) travels on Hf for 2-y cycles and is then transferred onto H, in cell

e2my, and (2) c(ij) travels on V H for 2(n+1)'y cycles and is then transferred onto V in cell

..

2-1.

Proof: We will prove (1) as the proof for (2) can be established along similar lines. By

Lemma A.1, c(ij) is transferred onto Hf at time t,-26n+l+2(-f-1)J. In 2"Y additional

cycles it will reach cell 2-y (delay on Hf is 2 cycles/cell).

X-*g



In order for c(ij) to be transferred onto H9 at cell 2-y, it must meet a control token

on VC at the input of 2-1 at time t1 +2"y. This means that this control token must have

been inserted into the array at time ts-t 1+2-f.(2-t-1)[2(n+1)+lJ where 2(n+l)+l is the

delay/cell encountered by control tokens on Vc. Substituting 6fn-i and "y-j-i, t 3 reduces

to 2n[n-2(j-i)+1-iJ+l. Now 2-y:5n as there are only n cells. So 2(j-i)_n. Also i<n and

hence [n-2(j-i)+-i]>-n. From step (2b) of the algorithm, a control token is inserted into

the array on Vc at time 2kn+1, Vk>-n. U1

We are now ready to establish our main result about the correctness of computing

c(i,j).

Theorem A.1: c(ij):=wij+ min (c(i,k)+c(kj)) when it is transferred onto Hf and Vf.i<k<j

Proof. We prove this by induction on

Bass. "y~l. The correct value of c(ij) when -y-1 is its initial value w(i,j) which is

stored in location 6 of cell 1. At time 26n+2, address 6 and a control token are inserted

on the address belt and Hc respectively. So w(ij) gets transferred onto Hf and Vf.

Inductive Step. We have to show that the Theorem holds Vi' and Vj' such that

S-i' --7+1. Let i -i+a- and f -a+j. We will then have to show that cki+a-l,

a+j)-. min {c(i+a-l,k)+c(k,a+j)). To show this we must show the following.
i+a-1 <k<a+j

1. c(i+a-l,k) and c(k,a+j) meet at cell -y+1 before c(i+e-1, a+j) is transferred, and

2. when they meet, the address on the address belt at the input of -1+1 is n-i-a+l.

By the inductive hypothesis and Lemma A.1, c(i+a-l,k) is correctly computed when

it is transferred onto Hf and Vf at cell k-i-a+1 at time t--2[(n-i-a+l)n+1+2(k-i-a)]. It
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then travels on Hf for an additional 2(k-i-a+l) cycles. Subsequently, it travels on H, till

it reaches cell -y+1. Let t 2 denote the time taken to reach cell -t+1 after transfer. Now

t2(2(k-i-a+l))+[4(y+1-2k+2i+2a-2)]. The expression within ) is the time it travels

* on Hf and that within [ is the time it travels on H,. t 2 can be simplified to 2[i+2j+3o-

3k-i]. So,

tl + t 2 -2[(n-i-a+l)n+1+2(k-i-a)-3k+3a+i+2j-1]
==2[(n-i-a+l)n-k+a-i+2j] ... (*)

By the inductive hypothesis again, c(k,a+j) is correctly computed in cell a+j-k

.-. when it is transferred onto Hf and Vf at time t 3 =2[(n-k)n+l+2(a+j-k-I)]. It then travels

on Vf till it reaches cell "+1. Let t 4 denote this travel time. So t 4 =2(n+lX-y+1-O-j+k)

(recall that delay/cell on Vf is 2(n+1) clock.cycles). Now t3 + t4 can be simplified to

4. 2(n-i-a+l)n-k+a-i+2j] which is the same as (.).

We will next show that (*)< time at which c(i+a-1, a+j) is transferred onto Hf

4.' and Vf. By Lemma A.1, this time is 2[(n-i-a+l)n+1+2(j-i)]. We then have to show that

2[(n-i-a+ 1 )n+ 1 +2(j-i) 2[(n-i-G+ 1 )n-k+a-i+2j] which reduces to showing that

-k+a-i+2j:51+2(j-i) and this is true as i+a-l<k<a+j.

In the proof we had assumed that c(i+o-l,k) travels on Hf and H, whereas

c(k,a+j) travels on Vf alone. We can also show in the symmetric case where c(i+O-l,k)

travels on Hf and c(k, a+j) travels on Vf followed by V, that they still meet at cell

* . +1.

Lastly, we must show that the address on the address input at cell '1+1 is n-i-a+1.

This address must have been inserted on the address belt Ad of cell 1 at time (*)-2(j-i)

which can be simplified to 2{(n-i-a+i)n+1+Ie+j-1-kl). From step (2c) of the algorithm,

this address is n-i-0+1 if O<[a+j-l-k]<n. Now l<k< o+j < n+1 and so O<a+j-k

*, _" , J ,. - . . . . . . . , , .. .. -, , . - ,-, . * -. . ,.. . . -. ' ' . :-... . -. -



and hence O<a+j-k-1. Also a+j<_n+l and hence -k-l+a+j:n as k>O

B. Proof of the Transitive Closure Algorithm

We establish that after three passes the c(ij)'s contain the transitive closure A'.

Our proof is along similar lines to the proof in [18] for the mesh-array algorithm in [6].

Recall that a k-path from vertex i to vertex j denotes a path from i to j that goes

through no vertex numbered higher than k except the endpoints. Consequently, i

and/or j may exceed k.

In the proofs that follow, the expression within { will denote the time at which

the elements are inserted in the array and that within [ will denote the time it takes to

reach a cell after insertion.

Lemma B.1: In any pass aik and aki meet at cell i+j-l.

Proof: aik reaches cell i+j-1 at time tl-(t.P+n(nl)+(i-l)n+k-l)+[i+j-2]. Similarly akj

reaches cell i+j-1 at time t2 -(tP+(n-j)n+(k-1))+[(i+j-2)n+l)]. Now ati travels at a

delay of (n+l)/cell on Vf and hence (i+j-2) is multiplied by a factor (n+l) in t2. The

expression in t 2 can be simplified to tP+n(n-l)+(i-l)n+(k-1)+(i+j-2) which is the same as

ti. 12

Lemma B.2; In any pass, (1) aij and azj meet at cell i+j-1, and a1j and aii also meet at

cell i+j-1.

Proof: We will prove (1) and the proof for (2) is similar. Now aij arrives at cell i+j- at

time tl-{tP+n(n-l)+(i-l)n+j-I )+[i+j-2] and aij arrives there at time t 2-{tP+(n-

j)n+(j-l))+[(i+j-2Xn+l)] which can be simplified and shown to be the same as ti.
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Corollary B.I: a13 and a i are updated to the value of c(ij) when they pass ceil i+j-1.

Proof: aj and address i are inserted at the same time in the array. They both travel aL

the same speed and hence reach cell i+j-l at the same time. A control token is inserted

on VC along with ajj. They both travel at the same speed and hence when aii meets aj, it

gets updated. A similar argument will prove that aij is also updated.

Lemma B.3: In any pass, (1) aij reaches cell i+k-1 at time t,P +n(n-1)+(i-1)n +(j-

1)+(i+k-2), and (2) ai; reaches cell k+j-1 at time t5P+n(n-l)+(k-1)n+(j-l)+(i+k-2).

Proof: Immediate from steps (2a) and (2b) of the algorithm. El

Lemma B.4: Suppose there is a min(i-j)-path from i to j, that is, a path that goes

through no vertex as high as its end points. Then on pass 1 of the algorithm, aij, a 1 and

c(ij) are all set to 1 at or before aij and aii reach cell i+j-1.

Proof: We prove this by induction on the length of the shortest path from i to j. For

the basis, paths of length 0 or 1, the Lemma holds as aij and aij are I initially and c(ij)

is assigned 1 when either aj or aj,, whichever reaches cell i+j-1 earlier.

For the induction, suppose there is a min(ij)-path of length two or more from i to

j. Then there exists some other vertex I on the path. Let I be the highest numbered ver-

tex on this path. Now I <i and I <j because the path is a min(ij)-path. Since I exceeds

any other vertex on this path, there is a min(i, )-path from i to I and a min(I j)-path

from I to j, and both of these paths are shorter than the path from i to j.

By the inductive hypothesis ail and aj are set to 1 at or before ail reaches cell

i+1-1 and alj reaches cell I +j-1 respectively. Let t1 and t 2 be the times when a1l and a1j

teach cell i+-1 and I+j-I respectively. From Lemma B.3, t--t,'+n(n-l)+(i-I)n+(I -

, r, - ,- , e,,n ,, , ~r,,, .,,.. .,-",, ,..: ,: .'...................................-.''......."..'-.-"-.........,..."."
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~ ~1 )+(i+1-2), and t.,=t~l+n(n- l1)+(I- I)n+(1 -I)+(l +1-2).I

Let t3 be the time at which they meet in cell i+j-1. Now t . ={t 1+n(n-I)+(i-1)n+.

1) +[i+j-21. As i>1 and j>i, t3> tj and t 3 >t 2. Recall that address i is inserted into

the array along with ail (step 2(e) of the algorithm). Consequently cij is assigned 1.

Let t 4 be the minimum of the time taken by aij and aij to reach cell i+j-1 and so

t4=tP+n(n-1)+(i-1)n +min(i,j)-1+(i+j-2). i>1 and j>1 and so t 4 >t 3. Hence a, and a,'

are assigned 1 when they reach cell i+j-l. LI

Lemma B.5: After pass 2 of the algorithm,

a. If there is a j-path from i to j, then c(ij) and aij are set to 1 by time tP+n(n-1)+(i-

1)n+(j-1 )+(i+j-2).

b. If there is an i-path from i to j, then c(ij) and aij are set to I by time tP+n(n-

1)+(i-1)n+(i-1)+(i+j-2).

C. If there is a max(ij)-path from i to j then c(ij) is set to 1 at some time.

Proof: We prove this by induction on the path length. If the length is 1 then aij(a,.)

must be 1 if there is a j-path (i-path) from i to j. Hence c(ij) will be assigned 1 when aj

or ai' reaches cell i+j-1.

For the induction, suppose there is a j-path of length at least two from i to j. Let

I be the highest numbered vertex on the path. Then I <j and there is a shorter 1-path

from i to 1. By the inductive hypothesis, ail is set to I by time tf=t,+n(n-l)+(i-

)n+(I-1)+(i+I-2). Since I is chosen to be the highest numbered vertex on the j-path,

there is a min(ij)-path from I to j. By Lemma B.4, aj is already 1 by end of pass 1.

Thus at time t2==t,2+n(n-l)+(i-l)n+(I-l)+(i+j-2) which is later than tj, ail and a1j meet

at cell i+j-I at which time c(ij) is set to 1. It can be easily verified that aij and aj arrive
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at cell i+j-1 later than t . Hence they too are assigned I.

We have proved (a). A similar argument will establish (b) and these two together

imply (c). E

We are now ready to establish our main result.

Theorem B.1: After the third pass, c(ij) is set to 1 if there is any path from i to j.

Proof: By Lemma B.4, if there is a max(i,j)-path from i to j then aij is already 1 after

pass 2. Otherwise, the highest numbered vertex I on some path from i to j is larger than

either i or j. This means that there is an I-path from i to I and an I-path from I to j.

The I-paths from i to I and I to j are a max(i,I )-path and max(I ,j)-path respectively by

the maximality of 1. By Lemma B.5, a,, and ati are set to 1 by end of pass 2. They meet

again in cell i+j-1 in pass 3 at which time c(ij) is assigned 1. El

C. Area-Optimality of the Dynamic Programming Algorithm

The recurrence used to compute the dynamic programming problem (see Section 2)

can be rewritten as:

ci ° ) - wjj, I <i <<n+ I

c€ia l ) l ci o)min ( ciVla)+cDaC) }
Ii<k<i

We will establish that the area required by the linear array to compute the

recurrence is assymptotically optimal. We establish this result under the following

assumptions.

1. Any special purpose machine (a chip in VLSI) that computes the value of cl s n l )

must compute c ' '), c (i ' ", (V i<k<j).
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2. The comparison and addition operation requires non-zero time.

3. The only input/output done by the machine is to read wq and output cl nfin I) (thiat

is, we do not allow partially updated c,, to leave the machine and re-enter at a later

time).

Definition C.I: c, is said to be assigned a value when either

a. wij enters the machine or

b. ci m& l) + ckJ " ) has been computed for some k.

Under these assumptions we will establish that fl(n) is a lower bound on the

storage required by formulating the evaluation of the recurrence used to compute the

dynamic programming problem as a game played with colored tokens on a graph G con-

structed as follows.

Let G-(V,E) where V-{Vi,j I <i<j_<n), and E=( (V, Vi+Ij) <Ii<j-1<n) U

{(Vo'j vijI) I l~i<j<n}

Fig. C.1 below illustrates the graph for n-10.
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1. Initially a white token is present on every vertex in V.

2. When ci1 is first assigned a value in the machine, the token on Vj1 becomes grey in

color.

3. When cil"j leaves the machine, the token on Vjj becomes black in color.

4. Once a token changes color it cannot r, turn to the color it had earlier.

5. All tokens change color from white to grey and finally to black. The computation is

over when the token on V,5 becomes block.

8. Each token spends a non-ero amount of time when it is grey.3. When c.
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We introduce the following notations which will be used in the proofs.

4. Let Xe_ V. A column of X is a subset of the vertices of X with the same first index. Simi-

larly, a row of X is a subset of vertices of X with the same second index.

Let X,= ( VJX I the token on Vj j is white }, Xg { Vi,jfX I the token on V,, is grey

and Xb= { Vi j(X the token on V,,j is black }.

Let A, B and C be three subsets of V defined as follows.

A, VEjV I <i<.2+ 1<<j5 3n *1 li~t <i<~ ',-<j<2 -L' ), and
4 4 -41 4 4 -4

- C I l~i3n 3n~j
C - "f I -- , j < --

Fig C.2 illustrates the three subsets when n=18.

'p

RA.Si

.4.

.0 6 A

~ B

dd

Fir -

Figure C.2

*@ ***V* - .. * - . S*** *~
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For convenience, we will assume that n is a multiple of four. Let t' denote the time

at which c D 3 obtaius its final value c .1na) 3 * Now choose t<t' to be the time at
4 4 4 4

which c fi" and c(~.I (V 2)1<k<3 have been computed but C(') 3. has been
4 444 4- 41

partially computed (that is, final assignment h-As not yet been made). From the

recurrence relation it is seen that such a time instant must occur by assumption 2.

We will obtain a lower bound on the number of grey tokens on vertices in V at

time t. Since a grey token corresponds to a ci1 value that is in the machine, by assuming

* that each such value requires unit storage, we will obtain the desired lower bound on the

storage.

Lemma 0.1: If the token on any V1jtV is white then the token on any Vi~ (t<j) and

any V, (s > i) must be either white or grey.

Proof: If the token on V,,j is white then cij has not been assigned a value. Computing

ci~fi') requires the values of c1~fin') (V j>t) and On" (V s>i). Hence, none of these

could have left the machine. Therefore, the tokens on Vi~ (t<) and V.,j (s>i) cannot be

black.

Lemma C.2: At time t, (a) Cb=l and (b) A,-t

.,o

".Proof: (a) At time t, c +lak3 has been partially computed. Suppose V1 _+y C has a black
4 4

. :;" partially computed (that is, ~~~finalasgmn ntytbe ae.Fo h

'. o-,-%.- reorenc lton it ssentt sc time t.Snec rq irestn must forcuasmtion 2.ij)rqie

c ?ffm't)3 . for computation, this implies that ci has already been computed - a con-
T4 4 4

tradiction.

S-S

°"...Pof ftetkn nV~ swiete i has not been assigned - vaue.. Computin
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(b) At time t, c (s>-+1) has been computed. Suppose VyeA (x>n+1) had ah t t n 4 ) 4
4

,... white token on it. Then 0 (""~) could not have been computed -- a contradiction. Since

c, 3 has been assigned a value, the token on V3  , must be grey, Finally, since
4 4

t< )have been computed, all V A(t<-) must have a grey or black
4 4-s,t

.4

token. Hence A[=$. Li

,- Lemma C.3: If I C, then BI+IB. n>
32 - 18

Proof: Since I C. I > - at least n columns of C have a white token. (A column is
32 8

said to have a white token if the token on at least one vertex in the column is white ).

Then by Lemma CA, at least -1 columns of B must not have a black tokens. Thus at
8. The~n n ofm ~,atlat

least -X n of the vertices in B have either grey or white tokens on them and hence,
8 2

2IB1I+IB.I >--. LI

2 26

0. 1, at least -L.~ rows of A must not have a black token. Thus, at least

-16

-X-X -. I- of the vertices in A must have grey or white tokens, that is
2 18 1- 512

IAwI+ AgI >1
n2

IAII.I4x .  [

p b0'
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Theorem C.1: At time t, the number N of grey tokens on vertices in V is f0(n 2).

R2
Proof: Since IC , - by Lemma C.2, it follows that at time t, I Cg + I C, 1

11

Thus, at least one of the following must hold: I Cg n2 or Cw I _-. If
32 32

"Cg n2 then N=f-(n 2). If IC.1 ! -2 then by Lemma C.3, Bg5+l1B >2-.

32 32 16

Again, at least one of the following two conditions must hold: I B 51>- or-- 32

I w If g B -I- then Nzmfl(n 2). If I B, I >.LE then by Lemma 0C4,
3-32 32

n2

1Aw + IA >-' By Lemma C.2 however, at time t, [A, I- *f and ths,

01

.. I Ag _ - Hence, in all cases N==O(n 2).
.. ? 512

D. Area-Optimality of the Transitive Closure Algorithm

We will now establish that the area required by the transitive closure algorithm is

optimal. We obtain a lower bound on the storage required to compute matrix multiplica-

tion. As matrix-multiplication and transitive closure are related [16] the lower bounds on

the area are the same to within a constant factor.

Let aij, b,,, and cij denote the (ij)th element in matrix A, matrix B and result matrix

C respectively. We establish this result under the following assumptions:

1. Any special-purpose machine (like a linear array) that multiplies matrices A and B

must compute aikbkj ( Vi, Vj and Vk 11 <ij,k<n).

2. The special-purpose machine has a constant number of I/O ports.

I~
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3. The elements of the matrices A, B and C are inserted into the special-purpose

machine 9nr once through the input ports.

Under these assumptions we will establish that fl(n2 ) is a lower bound on the

storage that is required by any special-purpose machine that multiplies two nXn

matrices. We obtain this bound by formulating the computation of mitrix multiplication

as a game played with tokens on an undirected graph constructed as follows:

Let Gk-(Vk, Ek), k=l,..,n where

Vk={fik, hkj I i-l,..n and j-l,..,n) and

Ek=(<fik, hkj> i=l,..,n and j--l,..,n)

4 The rules of the game are as follows:

1. A token is placed on fik (hkj) when aik (bkj) is inserted into the machine.

2. Updating cij ( by adding aikbkj to ci for some k) results in removing the edge

<fik, hkj> from Gk.

3. An edge is removable only if there are tokens at both end vertices.

- 4. A token from a vertex is removable only if all the edges incident on the verte.x are

removable. When a token from a vertex is removed then all the incident edges on

the vertex are deleted. (The token will eventually leave the machine and will never

reenter.)

We will assume that each token occupies unit storage (0(1)). We also assume that a

partially updated cij also occupies unit storage. (At any instant of time e1j is partially

updated if there exists some k (l<k~n) such that aikbkj either has not been computed

and/or added to cii by that time instant.)



Let Xk be the earliest time at which the first token in Gk is removable and let yk be

the earliest time at which all the tokens in Gk are removable. Since only a constant

-" number of tokens enter the machine at any time, by choosing n sufficiently large, we can

.1 . ensure that Vk (1<k<n) Xk<yk. Vk (1 <k<n), let Ik-[Xk. YJ denote the time interval

between and including Xk and Yk

Lemma D.I: At any time t such that xk<t<yk, there are at least n tokens in Gk.

Proof: Without any loss of generality, let the first (or one of the first if there are more

than one) token(s) that can be removed from Gk be the one on vertex fmk" At tI = Xk,

then, there must be tokens on all hkj (I<j__n). We claim that no token on any hk,

will be removable at any t (xk:t<yk).

Assume this is not the case, and at t<Yk, let hki be the first vertex (or one of the

first vertices) from which a token is removable. This implies that there must be tokens

on all vertices fjk that still have incident edges. This means that all the edges still

remaining in Gk are removable, and consequently all the remaining tokens in Gk are

removable at time t. But then tiyk -- a contradiction. Hence no token on any Lkj is

removable at any time t (Xkt<yk). Each hki has a token and hence the Lemma.
-0

Lemma D.2: Let m<n. For any i, if t~y i and Gi has m tokens then at least 2- edges
2

must have been deleted from Gi.

Proof: There are m tokens in Gi. Since t~y,, the absence of a token on a vertex means

that all the n edges incident on the vertex have been deleted. (At t-yi, all edges in Gi

are removable). The number of absent tokens-2n-m which is greater than n as m<n.

-- ,
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,,, Now one edge is in common with at most two vertices. Thus the 2n-m absent tokens

n2

result in at least 2- deleted edges.
2

Let us impose an ordering on the sets Ik such that .. <x and let r =

Ik I Yk--Xi. and A-(Ik I Yk>xi.)

Theorem D.1: Any matrix-multiplication machine requires fl(n2 ) storage.

n n

Proof: Since IFI+IAI=n, either Irl > 2- or IAI > -"
22

-II

Case 1: JAI 2! -1 (see Fig. D.1)

xl xl
XXr

ii Figure 0.1

_ At t-xi, all the intervals in A satisfy Lemma D.I. Hence at t-;, there are at least

n(-) tokens in the machine. So the storage required is fl(n2).

i-4

n ae9 I'>! (see Fig. D.2)

c,,€ . Il >

. Y2

- ,,.,[,€ .,34 Y3 eC ., ,..-,. . -. .... .. ,'-.,,',• - -. -• . .. - " ' . - - - . .,"," --
X . % " * , " ' ' " " , . o , . . i i . l m . w i a w
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X2-- Y2 I

".' X 3 '  Y3

~ d x
4 Y

Xin' -Yin

Figure D.2

At t-x 1 , either all Gk, such that IkEA, have n tokens on them, or at least one of them

has less than n tokens. If every Gk has n tokens then the storage required is again

l(n 2 ). If any one, say Gr, has less then n tokens then by Lemma D.2 Gr must have

n2

released at least -- edges. Now each released edge corresponds to a partially updated2

cij. None of the cUj's could have left the machine as all of them are finally updated only

at t >xj Thus at any time t (yk,:t~x,,) there are at least ! partially updated Cii's in
2

the machine. The case yk-xi. is covered by assumption 2 which precludes the possibil-

ity of all these cij's being instantaneously updated and leaving the machine. So the

storage required for the partially updated cij's must be fl(n 2).


